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J .  Phys.: Condens. Matter 1 (1989) 3325-3336. Printed in the UK 

Wannier Stark ladders in the optical absorption 
spectrum of a ‘Hubbard exciton’ 

E R Chalbaud and J-P Gallinar 
Departamento de Fisica, Universidad Sim6n Bolivar, Apartado 80659, Caracas 1080A, 
Venezuela 

Received 24 August 1988 

Abstract. A theory of absorption in a half-filled strong coupling extended Hubbard chain is 
applied to obtain the line shape of the optical absorption spectrum in the presence of a 
constant electric field E. As E is turned on, the zero-field spectrum breaks up into a complex 
asymmetrical structure of sharp peaks and gaps, associated to unevenly spaced Wannier 
Stark ladders of localised states of the electron-hole pair. The intensity of a Stark ladder 
peak becomes vanishingly small as the corresponding ladder rung number diverges. Two 
well defined absorption bands, arising from the parallel and the antiparallel alignment of the 
electric field E and exciton dipole moment, capture most of the intensity for a given E and 
sufficiently strong electron-hole mutual attraction V .  For a given V ,  the lower-frequency 
[integrated) absorption intensity oscillates as a function of E ,  and then drops sharply to a 
constant value of half the total intensity as E further increases. The spin configuration of the 
Hubbard chain is found to have a significant influence upon the intensity of the absorption. 
Finally, some analytic results are presented when E = 0. 

1. Introduction 

Several authors have studied the motion of particles constrained to ‘hop’ on a lattice 
subject to various potential energy wells. Recently, Chalbaud et a1 (1986) analysed the 
quadratic or parabolic well. Prior to this, Gallinar and Mattis (1985) had considered the 
linear (electric) potential well, with special emphasis on hard-wall boundary conditions 
for the eigenfunctions of the well (see the review by Mattis 1986). Among other inter- 
esting results, unevenly spaced Wannier (Stark-ladder-like) eigenvalues were found for 
the spectrum of the well. Since its first prediction by Wannier (1959), the existence and 
nature of such ladder-like eigenvalues has remained a matter of considerable theoretical, 
as well as experimental, controversy (see, for example, Callaway 1974, Hart and Emin 
1988). Thus, it may be worthwhile to take up similar studies again, but with a specific 
physical application in mind. In this paper a previously developed theory of optical 
absorption for a narrow half-filled Hubbard band chain (see Lyo and Gallinar 1977, 
Gallinar 1978), is re-examined and extended to include both the effect of a constant 
electric field E on the absorption spectrum of what we may call a ‘Hubbard exciton’, and 
that of a nearest-neighbour mutual electron-hole attraction V as well. 

Because of the hard-wall-like relative hopping motion of its electron and hole, the 
interaction of the dipole moment of the ‘Hubbard exciton’ with the constant electric 
field E ,  gives rise to an effective linear potential well, and thus some of the predictions 
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of this Lyo and Gallinar (LG) absorption theory are related (where applicable) to those 
of the linear well considered by Gallinar and Mattis. In particular, it also predicts the 
existence of non-uniformly spaced (optical) Stark ladders. This mathematical parallel 
may be of greater interest than just a purely academic one. Indeed, Lyo and Gallinar’s 
theory? has been used to interpret experimental features of the ( E  = 0) absorption 
spectra of some strongly correlated one-dimensional organic compounds such as pot- 
assium tetracyanoquinodimethane (TCNQ) (Yakushi et a1 1979), or the infrared spectrum 
of dibenzotetraselenafulvalene-tetrafluoro-TCNQ (Jacobsen et a1 1984). However, all of 
these previous sample measurements have been done in the absence of a constant E. 
Going one step further, we would like to conjecture (Fukuyama et a1 1973) that for an 
appropriately large E ,  the optical absorption spectra of these insulating compounds (and 
other general alkali-TcNQs) might show experimental evidence of optical Stark ladders, 
such as are predicted by the theory considered in this paper for a narrow-band many- 
body insulator. 

To this effect, it must be pointed out here that the optical experiments of Koss and 
Lambert (1972) in ‘usual’ insulators are generally$ interpreted as indicative of the 
existence of the quantized Stark ladder, Analogous experiments for one-dimensional 
organic materials could then shed some valuable new light on this subject§. 

Hence we certainly feel that the LG absorption theory is worth investigating on its 
own for E # 0, on account of its apparent suitability under zero-field conditions for 
appropriate one-dimensional organic insulators. Accordingly, some of our extensive 
numerical results concerning this interesting matter are presented below, and further 
analytical findings are also given for the zero-field case. 

2. Formalism 

Weconsider theextendedHubbard (1978) Hamiltonian, withaconstant Esuperimposed 
along the chain direction, as 

where t is  the transfer integral, U is the on-site and V the nearest-neighbour Coulomb 
interaction. c~,(ci,,) creates (destroys) an electron of spin o a t  sitej, ni,, = c&cj,, is the 
occupation number; ni = &nj,,, and a IeIEa, where e is the electronic charge and a is 
the lattice constant. The absorption spectrum o(w) is given by the real part of the 
complex conductivity. By a simple extension of the LG theory (see, for example, Gallinar 
1979a), one can obtain a(@) in terms of a continued fraction expression as 

where N ,  52, p are the number of lattice sites, the volume of the sample, and the 
probability of initial electron-hole pair creation (‘Hubbard exciton’), respectively. We 

t Suitably extended by the inclusion of a nearest-neighbour electron-hole attraction V.  
$ Unfortunately, no universal agreement exists on this interpretation (see Krieger and Iafrate 1986). 
5 To the best of our knowledge such experiments have yet to be done. 



Stark ladders in the absorption spectrum of a 'Hubbard exciton' 3327 

with z = w - U - id. The second (bracketed) term in (2) corresponds to the parallel 
alignment of the exciton dipole moment with E. It is obtained from the first (or anti- 
parallel) term by the substitution a * -a. po(w;  x )  as given by (3) may be thought of 
as a local 'density of states' for the electron and hole when separated by distance a. 
Finally, the weight function Q(x, /3) is given by 

Q ( x ,  P )  = (2 cos P)/[n(l - x2  sin2/3)(1 - x 2 ) ' l 2 ]  (4) 

withp = tan2(p/2), and 0 s /3 6 n/2. Forp  = 1 we have an antiferromagnetic (AF) spin 
arrangement in the Hubbard chain, and 

Q ( x ,  n/2) = d(x - 1). (4') 

For p = 1/2 and p = 0, the spin arrangement is random (R) and ferromagnetic (F), 
respectively. 

We have evaluated the continued fraction in (3) analytically in terms of Bessel 
functions J,(y) of the first kind. After some manipulations, we find 

where y = 4tx/a. From (2), (3), and (9, we then write a(w)  in the form 

with K _= Nne2a2t2p/UQ, and where the summation over k extends to all the simple 
roots wk(x) of the equation 

VJ1 - &(Y 1 = (2W-,,/. ( Y )  (7) 

i.e., to all the poles of the continued fraction in ( 5 )  (or in (3)), with corresponding 
residues Rk(x).  For V = 0, equation (7) reduces to the condition 

J-,k/.(Y) = 0. (8) 

An equation formally equivalent to (8) was previously considered by Gallinar and Mattis 
(1985) in their study of the linear potential well problem. By itself it yields a non- 
uniformly spaced (optical) Stark ladder spectrum wk. It must be noted that (8) has also 
been considered, at various times, by other authors (Fukuyama et aE 1973, for example) 
in rather diverse contexts. Proceeding further, the integration over x in (6) finally yields 

with the x i  being those simple roots of the equation w - U - wk(xi) = 0 that satisfy 
0 S xi  S 1. We have evaluated (6) and (9) numerically for different values of the par- 
ameters a, Vandp. Some of our results in this rich parameter space are discussed briefly 
below. 
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Figure 1. Plot of a(w)/A' versus k' = (U - q/4t,'with 
A' = K/2t. For display purposes the &function peaks in 
(10) have been given a small width 6k' = (lOn)-'. The 
total area under the plotted curve is normalised to one. 
U = 3 , p  = 1 and (Ylt = 0.2. 
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Figure 2. Plot of ok(l)/eversus t/cr 
for V/cr = 10 and a parallel dipole 
moment orientation only; k = 1 ,2 ,  
. . . , 19. Because of the electron- 
hole attraction (-V), the ( t  = 0) 
state with w l / a  = -1, has moved 
down to (-ll), where it induces a 
characteristic 'repulsion' of nearby 
ladder levels when t # 0. 

f / a  0 

3. Results and discussion 

In figure 1 ,  we show the spectrum obtained for p = 1 ,  (V/2t)  U = 3 and a/t = 0.2. 
With t = 0.1 eV this corresponds to a field E on the order of lo5 V cm-'. Using the 
property (4'), for this (p = 1) AF case we can write (6) in the form 

a ( m ) / K  = R k ( 1 ) 6 [ w  - U - mk(1)]  + [a * -(U]. (10) 
k 

Thus, as shown in the figure 1, the optical spectrum given by (10) consists of two (semi-) 
infinite series of discrete &function peaks which partially interlace each other. One 
series, or Wannier-Stark ladder, exists for each orientation of the exciton dipole 
moment. Each b-peak is centred at an optical Stark ladder frequency U + mk(1), with 
the non-uniform spacing of the rungs of each ladder clearly visible in figure 1. With 
increasing ladder rung number ( k  + CO>, the intensity associated with a corresponding 
peak becomes vanishingly small, and, as can be seen, each Stark ladder is ultimately 
characterised by evenly spaced rungs with @ k (  1) + +- k a ,  in the limit k + =. The origin 
of this last behaviour can be qualitatively understood from figure 2 ,  where a ~ ~ ( 1 )  
spectrum (for the parallel dipole moment) is displayed as a function of t/aj.. When 
k + oc., a general feature of such spectra is that the eigenvalues wk( 1) = -+ k a  ultimately 
become flat or t-independent, and are thus evenly spaced. 

Returning to figure 1, to the left two intense peaks can be seen, with heights of 13.8 
and 14.1. The former (latter) corresponds to parallel (antiparallel) alignment of E and 
i Note from equation (7) ,  that wk(x)  depends upon x only through the combination ( tx ) .  



Stark ladders in the absorption spectrum of a ‘Hubbard exciton’ 3329 

3 

? 

0 
0 
k‘ 

Figure3. Plot of u(o)/A versus k‘ ,  
with p = U = 0, and same electric 
fieid as in figure 1; A = K/nt.  Only 
the region Ik‘l -: 1 is shown here. 
Notice the incipient appearance of 
gaps in the spectrum for Ik’l 3 0.8, 
wherein u(w) actually vanishes. 

the exciton dipole moment. Between the two they capture most (here 89%) of the total 
absorption intensity (i.e., the area under the curve). In general, for strong enough U > 1 
two such peaks will be approximately located at 

ki,2 -[(U + ~ - ‘ ) / 2 ]  t a/4t (11) 

and can be thought of as ‘excitonic absorption’ of the electron and hole when they are 
nearest neighbours. Two such peaks are discussed below (see figure 6). 

We turn now to the case p # 1. In figure 3 we show the spectrum for p = U = 0, 
obtainedfrom equation (9) (with same a/t = 0.2 as in figure 1). Forp < 1, the S-function 
peaks of the AF (p = 1) case are now smeared out into sharp divergences. If V = 0, these 
arise in equation (9) from the inverse-square-root divergence of the function Q(xi ,  p) 
whenx,(o) + 1. If V f 0, it can be proved that additional sharp structure is also obtained 
from the vanishing of the derivative (dwk/dx),=,L. Note also the symmetry of a about 
k’ = 0. If V = 0, it can be seen from (2) and (3) that the spectrum is symmetrical, i.e., 
a(k’ )  = a ( - k ’ ) ,  always. Finally, we notice how the ‘bottom profile’ of a(w) in figure 3 
closely ‘resembles’ a corresponding zero-field ( a  = 0) spectrum with p = U = 0 pre- 
viously obtained by Lyo and Gallinar (1977). To enable comparison with such previous 
results, the total absorption intensity area in figure 3 has therefore been set at n/2. In 
figure 4 we have doubled the electric field of figure 3, and have smoothed out the sharp 
divergences of its spectrum by a ‘coarse-graining’ procedure. This is done numerically 
in equation (6) by approximating a(w) with the expression 

o( o) d o 

where a suitably small ‘grain’ Am is chosen. By comparing figures 3 and 4, we see that 
the coarse-graining procedure visually enhances the significant absorption profile of 
a(o) which was previously ‘obscured’ by the divergences present in figure 3. Up to the 
numerical accuracy involved, the graining procedure also preserves the total absorption 
intensity area under a( U ) ,  

Figures 5 ,  6 and 7 all refer to a p  = i, or random spin arrangement in the Hubbard 
chain. In figure 5 we have the asymmetry typical of the spectra with V # 0. Because of 
the negative ( - V )  energy of the electron and hole mutual attraction, the absorption 
intensity tends to be stronger for k‘ < 0, i.e., the a(w) curve is shifted to the left of the 
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Figure 4. Plot of coarse-grained 
o(w)/A versus k' .  The chosen 
grainingisgiven by Ak' = Aw/4t  = 

Because of stronger field E ,  
the first gap appears here for 
smaller Ik'l = 0.7, than in figure 3. 
The vanishingly small absorption 
peaks for Ik'l + 1 are a striking 
example of the (equally spaced) 
optical Stark ladder. U = 0, p = 0 
and a/t = 0.4. 

figure. Indeed, reading from figure 8, we see that the k' < 0 integrated absorption 
intensity of this (figure 5 )  spectrum represents about 85% of its total absorption intensity. 
The spectrum of figure 5 should be contrasted with a (U = 1.001) corresponding zero- 
field ( a  = 0) spectrum in figure 7. The strikingly complex structure created by the electric 
field is truly quite amazing. 

In figure 6, we see the two strong &peaks of figure 1 that have now broadened into 
the respective absorption bands typical o fp  # 1 in equation (6). The two bands partially 

6 

z 3  

-1 0 1 
k' 

Figure 5. Plot of coarse-grained u(w)/A versus k ' ,  with 
same graining Ak' as in figure 4. Only the region k' s 1 is 
shown here. Fork' > 1 the spectrum becomes extremely 
small. U = l , p  = 4 and a/t = 0.2. 

5c 

7 25 

0 
-1.8 -1.6 

k' 
Figure 6. Close-up plot of coarse-grained 
a(w)/A versus k' in the restricted region 
-1.8 s k' s -1.4. The (smaller) graining 
is set at Ak' = 2.5 x and no evidence 
of 'wiggly' structureis present onthis scale. 
U = 3, p = i and cult =0.2. 
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Figure 7. Plot of a zero-field o(w)/A versus k’, for different values of U indicated by the small 
arrows. Fork‘ 5 1 the spectrum vanishes identically. p = 4 and a/t = 0. 

intensity in the lower-frequency (k‘ C 0) region, 
versus a/t. For visual convenience, only a few 
points are shown when a/t C 0.25 in the p = 1 
curve. If a/t 3 2.8, the relative intensity is con- 
stant and equal to 4, but the spectrum can 
be asymmetrical. U = 1; ---, p = 0; - - - - - ,  5 1 , , , , ~ 

5 
I 

0 5  

p 4. - , p  = 1. 
0 1 2 3 

a / i  

overlap, and according to equation (11) their respective lower edges are given by k ;  = 
-1.61, and k;  = -1.72. The total intensity of their absorption is slightly greater here 
(91%) than in figure 1 (89%). This is an example of a general trend: asp  decreases, the 
intensity of the two peaks increases. We have discovered many other such interesting 
trends; they will be reported upon elsewhere. Figure 6 should also be compared 
with the corresponding zero-field (U = 3) spectrum in figure 7. As can be seen, when 
E = 0 the two ‘excitonic absorption’ bands then overlap completely into a single 
strong absorption peak. 



3332 E R Chalbaud and J-P Gallinar 

Finally, in figure 8 the relative intensity of the lower-frequency (w s U) absorption 
is plotted (for U = 1) as a function of electric field. Because the weight function Q(x, P )  
satisfies the @-independent) condition 

a(w) satisfies the sum rule 

j d u  a(w)  = 2K 

(note that one has &Rk(x) = 1 in equation (6)). Thus, the total area under a(w)  is field- 
independent. Figure 8 then exhibits how the integrated absorption intensity for w s U 
(given by the ‘left area’) ‘oscillates’ with growing amplitude as a function of increasing 
applied field. This oscillatory behaviour persists up to a certain field (which increases 
with U ,  but is roughly independent ofp), above which the (w S U )  intensity is constantly 
half the total. For the U = 1 case shown in this figure 8 a strong field of about lo6 V cm-l 
is needed before the sharp drop is attained. Note also how the abrupt oscillations present 
forp = 1 become smoother for decreasingp. The oscillations occur every time the Stark 
ladder frequency curves w k ( l )  (such as those in figure 2) intersect a straight horizontal 
line drawn through the point (0,O) of figure 2. When the intersection occurs with a curve 
w k ( l )  for the parallel (antiparallel) dipole moment alignment, the left area goes down 
(up). As a consequence, for a/t + 0 we get an infinite number of oscillations with ever- 
decreasing amplitude and width. Since they cannot be fully illustrated on this (or any 
other) scale, we have plotted a few points in the region a/t S 0.25. Another interesting 
feature of figure 8 is the ordering of the intensities with respect to p .  The intensities 
increase with decreasing p for field values up to a/t = 2, at which point the order is 
reversed. Finally, we stress that an increasing electron-hole attraction leaks intensity 
from the k’ > 0 region into the region k’ < 0, and that for strong enough U the two 
excitonic absorption peaks (or bands) will both lie in the k‘ < 0 region, thus contributing 
to the left area intensity plotted in this figure. 

4. Zero-field spectrum 

Having numerically studied in some detail the electric field effects, we turn now to a 
brief analytical digression concerning the field-free spectrum. By itself, it serves both as 
apoint of comparison and of illustrative contrast to the spectra obtained here. Both Lyo 
(1978) and Gallinar (1979b) have partially considered it previously, but here we present 
a more complete analytical solution in terms of elliptical integrals. This may then give 
the reader a somewhat more thorough example of the application of our formalism. 

If we set a = 0 in equation (3), the resulting continued fraction can be evaluated 
easily in terms of elementary functions. After a straightforward analysis we find from 
(2), (3) and (9) that a(w) = al(w) + a2(o), where 

a l ( w >  1 [(4tx)2 - (w - u)2]1’2 -- 
K -;lo d X Q ( x ’ P ) v ( w - U + v ) + ( 2 t x ) *  

arises from a ‘continuous’ density of states po(w; x) in (3), and can be evaluated in terms 
of elliptical integrals (see Appendix 1), while 
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arises from a single pole ol(x) in (3). In (14) we have 

R , ( x )  = [1 - ( 2 t ~ ) ~ / V ’ ] u [ l  - ( 2 t ~ / V ) ]  

where u[l - (2tx/V)] is the unit step function; and I dol/&/ = S?x/V, since 

w1(x) = -v - [(2tx)2/V]. (14‘) 
The point x l ( o )  is given by the roots of the equation o l ( x l )  = w - U ,  such that 
0 S x ~ ( o )  6 1. Thus, 

X I ( @ )  = { [ - V ( W  - U +  V)]/4t2}1/2 [ - ~ ( 2 k ’  + U)]’” (15) 

- ( U  + ~ - ‘ ) / 2  c k’ 6 - ~ / 2  (15’1 

and if 0 S xl(w) 6 1, then k’ must satisfy the inequalities 

for 02(o) not to vanish. Upon final substitutions in (14), we obtain (withA E K / n t )  that 

(16) 
2A(v - lk’l)u(u - l k ’ l ) ~ ( l  - X I )  COS@ 

0 2 ‘ ~ )  = x l ( l  - x:>1’*(1- x: sin2 

In figure 7 we have plotted o l ( w )  + 02(w)  forp = 4 and increasing values of U ,  up to U = 
3. As U is turned on, the k’ = 0 logarithmic singularity of a( U )  present for U = 0, changes 
into a stronger inverse-square-root singularity which moves to the left point k‘ = - u/2. 
This singularity in o(w) arises from the vanishing of x l ( o )  in (16), i.e., of 
(dul /dx) ,=xl  in (14). Curiously, if k ’ -+  -u/2 from above, then o(w) tends to the 
‘unperturbed’ value of the ( U  = 0) spectrum at the point k‘ = -v/2. As U continues 
increasingupto U = 1, moreintensityisprogressivelyleakedinto theregion -1 S k’ 6 0 ,  
the spectrum becoming very asymmetrical. This continues until the value U = 1 is 
reached, and a second inverse-square-root singularity appears in 02(w)  at the point k‘ = 
-1 (i.e., forxl(w) --f 1). This effect can be clearly seen in figure 7, where the spectra for 
v = 0.9 and v = 1.001 can be contrasted. For U > 2, both singularities finally leave the 
unperturbed spectrum region, and a strong ‘excitonic absorption’ peak emerges to the 
left of the ( U  = 0) spectrum. This excitonic peak has its lower edge at 

0 = U + Ol(1) = U - v - (4t2/V) (17) 
according to (14’) and (15’). In Appendix 2 we show how this edge position can also be 
extracted, in the zero-field limit (a+ 0), from equation (7) defining the Wannier-Stark 
ladder frequencies. 

5. Summary 

Although the optical Stark-ladder-like spectra found in this work are extremely complex, 
and defy detailed description in any direct analytical manner, it is clear from the above 
that the simpler field-free ( a  = 0) case serves as a useful reference point for interpreting 
them. As such we have presented it here, and proceed now to summarise our main 
results when E # 0. 

For the antiferromagnetic (p = 1) ground state of a strong-coupling extended Hub- 
bard chain, we have found that the electric field drastically changes the field-free spec- 
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trum into two semi-infinite optical Stark ladders. These ladders partially interlace with 
each other; their rungs become equally spaced only above and below the field-free 
continuous spectrum. For the random (p = i) and ferromagnetic (p = 0) spin arrange- 
ments, the ladders’ rungs broaden into a sharp but continuous (complex) structure of 
peaks and gaps. An interesting field-dependent oscillatory structure has also been found 
in the partially integrated absorption intensity (as opposed to the total one, which is 
field-independent according to the sum rule in (12)). This oscillatory structure is a clear 
manifestation of the optical Stark ladders previously found. By raising the temperature 
above the NCel point -t’/U, we obtain the random spin arrangement and a smoothing 
of the intensity oscillations. Finally, the application of a strong magnetic field inducing a 
ferromagnetic spin arrangement, also results in a further smoothing of these oscillations. 

Appendix 1 

We show that a,( U )  in (13) can be expressed in terms of the complete elliptical integrals. 
In fact, we expand in partial fractions the rational function of x that appears as part of 
the integrand in (13). Then we find for (13) the expression 

~ A ( C O S  p) [ ( y 2  - l ) I I (y2 ,  k )  - ( a 2  - 1)II(d2, k ) ]  
n[l + u(2k’ + v) sin2 p] (Al .  1) a l ( U >  = 

where I’I(y2, k )  and II(d2, k )  are complete elliptical integrals of the third kind (Byrd and 
Friedman 1954), with parameters 

Since d2 s 0, the integral II( d2, k )  is always in a ‘circular’ case and, thus, can be evaluated 
in terms of Heuman’s lambda function A&?, k )  (Byrd and Friedman 1954). After a 
series of transformations, there results 

2A(COSP)U(l - lk’l) 
{ ( y 2  - l)n(y2, k )  + (1 - k” sin2 P)K(k)  

a l ( w )  = n[1 + v(2k’ + v) sin2 

+ (n/2)(tan p) (1 - k’’ sin2 P)’/2Ao(P, k ) }  (A1.2) 

where u(1 - lk’l) is the unit step function, and K ( k )  is the complete elliptical integral of 
the first kind. 

Concerning the integral II(y2, k )  in (A1.2), we must distinguish two different cases. 
If 2k’ + U s 0, then k2 s y2  < 1, and the integral is also in a circular case. Expressing it 
in terms of Heuman’s lambda function, we obtain that 

in (A1.2); where the angle 
On the other hand, if 2k‘ + U 5 0, then 0 s y 2  s k2,  and the integral II(y2, k )  is in a 

‘hyperbolic’ case. It can then be evaluated in terms of Jacobi’s zeta function Z ( 0 ,  k ) ,  
leading finally to 

is defined through lk’l sin 5 = (U 12k’ + Y I ) ~ / ~ .  
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- kl2 sin2 p ]  ~ A ( C O S  p)u(l  - jk’l) k) 
Ul(U> = x[l + u(2k’ + U) sin2 p] {K(k) [sin 8[l + u(2k’ + u)l1l2 

+ (x/2)(tanp)[l  - k t 2  sin2 p]1’2Ao(p, k ) }  

where the angle 8 is defined by k‘ tan 8 = [u(2k’ + u ) ] ’ / ~ .  

Appendix 2 

In this Appendix we show how to obtain equation (17) from equation (7), in the limit 
a+ 0. 

With x = 1,  we rewrite equation (7) in the form 

J,(vsechA) = (V/2t)JV8(v’ sechp) (A2.1) 

where 

v~ - [ 0 1 ( 1 ) / ~ ~ ] > 0  v t = v + l  coshA~[ -w1(1 ) /4 t ]> l  

and cosh p = cosh A + a/4t. If a -, 0, then we have v+ CO, and we can use the asymptotic 
expansions for large order of the Bessel functions in (A2.1). Equation (A2.1) then 
becomes (Abramowitz and Stegun 1965) with A and p both positive 

exp[v(tanh A - A)] V exp[v‘(tanh p - p) ]  
(v tanh A) 1/2 = (5) (v’ tanh p )  U2 

(A2.2) 

and, since v’ * v; p- A ,  we obtain from (A2.2) 
V/2t = exp[v(tanh A - A - tanh p + p)]  

= exp[(4t/a) (sinh A - A cosh A - sinh p + p cosh p)]  

= exp[(4t/a)p(cosh p - cosh A)] = exp A.  (A2.3) 

Using now the logarithmic representation for cosh-’[-w,(l)/4t] in exp A ,  we finally get 
from (A2.3) that 

Somewhat similar procedures enable one to show from (7) that for /ok(l)l  s 4t and 
a-, 0, there is, additionally, a dense accumulation of frequency roots that ultimately 
give rise to al( w) in (13). 
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